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Laser-Cooled Mercury Ion Frequency Standard *
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Abstract:  A stable and accurate frequency standard based on the 40.5 GHz
ground-state hyperfine transition in 199Hg+ ions is described.  The ions are confined
in a cryogenic linear Paul (rf) trap and laser-cooled to form a linear crystal.  With
seven ions and a Ramsey interrogation time of 100 s, the fractional frequency
stability is 3.3 (2) × 10-13 τ-1/2 for measurement times τ < 2 h.  The ground-state
hyperfine interval is measured to be 40 507 347 996.841 59 (14) (41) Hz, where
the first number in parentheses is the uncertainty due to statistical and systematic
effects, and the second is the uncertainty in the frequency of the time scale to
which our standard is compared.

Atomic frequency standards [1, 2] play vital roles in physics, such as defining the unit of time
and other basic units, realizing fundamental constants, and testing basic physical phenomena [3].
A good frequency standard requires that the uncertainty of all systematic effects be small, and that
a high measurement precision can be reached in a practical time.  Here, we describe a frequency
standard based on a laser-cooled linear crystal of 199Hg+ ions confined in a linear Paul (rf) trap,
which satisfies these requirements.  The uncertainty from systematic effects (3.4 parts in 1015) is
approximately equal to the best values reported, from a cesium beam clock (5 parts in 1015) [4],
and a cesium fountain clock (2 parts in 1015) [5], and can be significantly reduced in future
experiments.

An important systematic effect for high-resolution spectroscopy and atomic clocks is the
second-order Doppler (time-dilation) shift caused by atomic motion.  Laser cooling can reduce
this shift and has been applied to accurate atomic clocks based on hyperfine transitions in trapped
9Be+ ions [6] and Cs atoms in a fountain clock [5].  Unfortunately, for trapped ions, part of the
atomic motion is due to the trap’s electromagnetic field and is not directly affected by laser
cooling.  In the linear Paul trap [7], driven motion (termed “micromotion”) can be significantly
reduced by confining the ions near the nodal line of the rf electric field.  A limiting case is a linear
crystal of ions confined along the field nodal line.  For example, if Hg+ ions are laser-cooled to the
Doppler limit, the magnitude of the time-dilation shift is 2 × 10-18 [8].

Fluctuations in frequency measurements are typically expressed by the two-sample Allan
variance [9]
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where ω0 is the angular frequency, and <ωk>τ is the kth measurement of frequency averaged over
time τ.  The quantity σy(τ) is usually called the frequency stability.  If measurement of the atomic
states is limited by quantum noise [10], the frequency stability is given by [11]
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In this expression, we assume the atomic transition is driven using Ramsey’s method of separated
fields [12] with time TR between applications of radiation pulses, ω0 is the angular frequency of
the atomic transition, and N is the number of atoms (assumed constant).  Atoms or ions that have
a relatively large hyperfine frequency are particularly attractive since good frequency stability is
possible even for small N.  Cigar-shaped clouds of ions whose long axes coincide with the nodal
line of a linear Paul trap have been employed to realize very stable (σy(τ) ≅ 5 × 10-14 τ-1/2)  199Hg+

[13] and 171Yb+ [14] microwave clocks using approximately 106 ions cooled by a buffer gas.
However, the fractional systematic frequency uncertainty in these clocks from the second-order
Doppler shift is about 4 × 10-14 [15].  The standard described here demonstrates both good
frequency stability and accuracy by using laser-cooled ions that are all confined to the field nodal
line.

Figure 1 shows a partial energy level diagram of 199Hg+.  A small magnetic field
(1-5 × 10-7 T) is applied to break the degeneracy of the F = 1 states, isolating the 2S1/2 (F = 0,
mF = 0) → (1, 0) hyperfine clock transition (ω0 ≅ 2π · 40.5 GHz).  Measurements of the Doppler-
broadened width of the 282 nm electric quadrupole transition give the temperature of the ions and
their heating rate in the absence of laser cooling.  Two collinear beams of sum-frequency-
generated 194 nm light [16] drive the indicated electric dipole transitions, which are used to cool
the ions.  For Doppler cooling, the frequency of a primary 194 nm beam p is tuned slightly below
that of transition p.  Although this is nearly a cycling transition, beam p can off-resonantly excite
the ions into the 2P1/2, F = 1 level, from which they can decay into the 2S1/2, F = 0 level.  To
maintain fluorescence, the frequency of a weaker repumping 194 nm beam r is nearly resonant
with that of transition r.

For any constant laser polarization and at zero magnetic field, two orthogonal superpositions
of the three 2S1/2, F = 1 magnetic sublevels are dark states.  After scattering a few photons, an ion
is optically pumped into these states, which scatter no photons.  To constantly pump the ions out
of the dark states, the 194 nm field must couple each magnetic sub-level of the 2S1/2, F = 1 state to
the 2P1/2, F = 0 state with a different time dependence. These conditions require that two laser
beams, which are tuned to transition p and are not collinear, interact with the ions.  The
polarizations of the laser beams must be varied to modulate independently at least two of the three
level couplings.  To maximize the fluorescence rate, the modulation rates should be comparable to
the maximum of the three Rabi frequencies.  A beam splitter divides the beam comprising beams r
and p into two beams, the first of which passes beams through a photo-elastic modulator (PEM),
then intersects with the second beam at a relative angle of 40º at the site of the ions.  The PEM
continuously modulates the polarization of the first beam between right and left circular, while the
linear polarization of the second beam remains fixed in the plane formed by the two intersecting
beams.

The ions are stored in the linear Paul trap depicted in Fig. 2 [17].  To confine the ions
radially, we apply a potential V ≅ V0 cos Ωt to two diagonally opposite rods while holding the
remaining two rods at ground potential.  Typically, V0 ≅ 150 V and Ω ≅ 2π · 8.5 MHz, giving a
radial secular frequency ωr = 2π · 230 kHz.  A potential U0 ≅ +10 V is applied to the two
cylindrical endcaps to confine the ions axially in an electrostatic potential characterized by an axial
secular frequency ωz ≅ 2π · 15 kHz.  The ions form a linear crystal along the nodal line of the rf
electric field at the axial center of the trap.  The trap is placed in an enclosure whose top is also
the bottom of a liquid helium Dewar [17].  The cryogenic environment eliminates ion loss and
suppresses frequency shifts caused by collisions with background gas.
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To reduce Doppler and Stark shifts induced by the trap’s rf electric field, we detect and
minimize ion micromotion in three noncoplanar directions [18].  We probe the ions in turn with
one of the two laser beams propagating at ±20º relative to the axis of the trap, and a third laser
beam propagating perpendicular to the plane of the first two.  During this process, a magnetic
field is applied so that just one of these beams can excite the ions without pumping them into a
dark state.  The first-order Doppler shift from the ions’ micromotion modulates the fluorescence
rate at angular frequency Ω.  We eliminate this fluorescence modulation by applying a static
electric field that forces the ions to the nodal line of the trap’s rf electric field and to the axial
center of the trap.

We use the Ramsey technique of separated oscillatory fields to probe the clock transition
[12].  First, the ions are cooled with both beams p and r for approximately 300 ms.  Next, beam r
is blocked for about 60 ms to optically pump the ions into the 2S1/2, F = 0 level.  Both beams are
then blocked during the Ramsey microwave interrogation period, which consists of two π/2
microwave pulses of duration tR = 250 ms separated by the free precession period TR, which we
vary from 2 to 100 s in separate runs.  Transitions to the F = 1 state are detected by reapplying
only beam p until the ion is optically pumped into the F = 0 state (≅ 10-20 ms), while we count
the number of detected scattered photons (typically about 150 per ion).   This process completes
one measurement cycle.

We synthesize the microwave frequency from a low-noise quartz oscillator locked to a
reference hydrogen maser [19].  To steer the average microwave frequency into resonance with
the clock transition, we step the frequency by +∆f , then -∆f , about frequency fM (≅ ω0/(2π)), and
complete a measurement cycle after each step.  Usually, the stepped frequencies lie near the half-
maximum points of the central Ramsey fringe.  On successive measurement pairs, we alternate the
signs of the frequency steps to avoid any bias from linear drifts in, for example, the signal
amplitude.  The difference between the number of detected photons for the pair of measurement
cycles gives the error signal εM.  A digital servo adjusts the average frequency according to
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where f0 is the initial value of the frequency, and the proportional gain gp and the integral gain gi

are independent of each other.  Typically, the maximum value of M for a single run is about 130.
The average frequency for each run is calculated after discarding the first four recorded
frequencies fi, to remove initial frequency offsets.

The stability of the steered microwave frequency when N = 7 and TR = 100 s is
σy(τ) ≅ 3.3 (2) × 10-13 τ-1/2, for τ ≤ 2 h.  Consistently, σy(τ) is about twice the value expected from
Eq. (2), primarily because of laser intensity fluctuations at the site of the ions.  The measured
frequency stability is comparable to those of the Cs beam standard NIST-7, for which
σy(τ) ≅ 8 × 10-13 τ-1/2 [20], and the Cs fountain standard, for which σy(τ) ≅ 2 × 10-13 τ-1/2 [5].

The average frequency for each run is corrected for the systematic effects shown in Table 1.
We first correct the average frequency of a run for the quadratic Zeeman shift due to the static
magnetic field Bs.  From the measured values of gJ [21] and the 199Hg nuclear magnetic moment
[22],  the fractional shift is 1.219 873 (5) 10-21 ν±

2, where ν± (≅ 1.4 1010 Bs, Bs expressed in
Teslas) is the frequency separation in hertz of the 2S1/2 ((0, 0) → (1, ±1)) field dependent
transitions from the clock transition. The peak-to-peak variation in the static magnetic field
between the beginning and end of a run is at most 1 × 10-8 T.  Since Bs ≅ 3 × 10-7 T, an upper
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bound on the uncertainty in this Zeeman shift is  1.4 × 10-15.  We observe no sidebands on the
∆mF = ±1 hyperfine transitions from power line-induced 60 Hz fluctuations in the magnetic field.
The corresponding upper limit on the Zeeman shift is < 2 × 10-20 when the static field is
3 × 10-7 T.

We also correct for an ac Zeeman shift that depends linearly on the rf power Prf delivered to
the trap.  The uncertainty in this correction dominates the overall systematic uncertainty of the
clock frequency.  This shift can be caused by magnetic fields due to currents at frequency Ω in the
trap electrodes that are asymmetric with respect to the trap nodal line.  (In an ideal trap, these
asymmetric currents are absent.)  Allowing for this asymmetry to vary for different ion crystals,
we measure the average transition frequency for Prf ranging from about 17 mW (V0 ≅ 140 V) to
68 mW (V0 ≅ 270 V) for each ion crystal.  A fit to these data gives the frequency shift
(dω/dPrf)/ω0 and the extrapolated frequency at zero rf power ω0, for that ion crystal.  Typically,
(dω/dPrf)/ω0 ≅ (2.5 ± 2.1) × 10-16 /mW (within the error, this value is the same for each ion
crystal), and the uncertainty in the extrapolated frequency averaged over five ion crystals used in
the frequency measurement is 3.2 × 10-15.  The additional uncertainty due to possible rf power
measurement inaccuracies is about 3 × 10-16.

The ac Stark shift due to blackbody radiation at 300 K is 1.0 × 10-16 [23], but should be much
less in the cryogenic environment.  From the measured 194 nm intensity at the site of the ions
when the 194 nm sources are blocked, the ac Stark shift due to stray 194 nm light present during
the Ramsey interrogation time is < 3 × 10-16.  Because the ion micromotion is minimized, the
velocity V of the ion motion and the electric field Erf that the ions experience can be determined
from the measured secular temperature [18].  We find that after the 194 nm beams have been off
for 100 s, the secular temperature T is less than 25 mK.  The corresponding electric field causes a
shift of magnitude < 2 × 10-18.  This temperature also corresponds to a fractional second-order
Doppler shift of magnitude ≤ 3 × 10-17.

We search for an added sloping background signal which would shift the measured value of
ω0, by increasing ∆f to 4.25 ∆fR when TR = 10 s, and 10.25 ∆fR when TR = 25 s, where ∆fR is the
frequency separation between Ramsey fringes.  The extrapolated fractional frequency shift is
< 2 × 10-19 when locking to the central fringe (∆f = 0.25 ∆fR) and TR = 100 s.  To estimate the
effects of the neighboring field-dependent hyperfine transitions, we assume the microwave field
coupling strength of the (0, 0) → (1, 1) transition equals that of the (0, 0) → (1, 0) transition,
while the coupling strength of the (0, 0) → (1, -1) transition is zero.  The corresponding shift is
dominated by the ac Zeeman shift, and is less than 1 × 10-17 when TR = 100 s and Bs = 3 × 10-7 T.
Frequency shifts due to the phase chirp of the microwaves as they are switched on and off
(combined with a possible leakage microwave field present during the free precession time TR),
and to asymmetries in the microwave spectrum scale as 1/TR.  By varying TR, we measure the
frequency shift from these combined effects to be -3 (3) × 10-14 /TR.

At 4 K, the partial pressure of most gasses is negligible [24], with the possible exception of
helium. An upper limit on the collision rate with helium background gas can be inferred from the
ions’ temperature after the cooling beams have been off for 100 s, where we assume that any
heating is caused by collisions with helium atoms.  We further assume that the helium collision
rate for heating is the same as that which causes frequency shifts; we approximate these rates as
the helium density nHe times the Langevin rate [25].  Using Cutler’s measurement of the helium
pressure shift for Hg+ [26], we can estimate a maximum shift of < 1 × 10-19.
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The fits to the transition frequencies as a function of rf power give the extrapolated frequency
ω0 at zero rf power.  This value is reproducible over 18 days, which includes 42 runs made over
seven days using five different ion crystals.  The normalized χ2 for the measurements of ω0 from
these five ion crystals is 0.77.   If we assume that the frequency depends linearly on time, a fit to
the data gives a drift of -5 (9) × 10-16/day, consistent with zero.

The hydrogen maser frequency is referenced to primary frequency standards through
International Atomic Time (TAI) [3] to obtain the average  value ω0 = 2π ⋅
40 507 347 996.841 59 (13) (5) (41) Hz.  The first uncertainty is due to the statistical uncertainty
in the extrapolation to zero rf power, and the second to the other systematic shifts shown in Table
1 combined in quadrature.  The third, due to the frequency comparisons, is dominated by the
published uncertainty in the frequency of TAI [27].  This value of ω0 is to be compared with the
previous most accurate measurement, which gave ω0 = 2π ⋅ 40 507 347 996.9 (3) Hz [28].

In summary, we have demonstrated a frequency standard based on crystals of laser-cooled
199Hg+ ions confined in a linear Paul trap.  For TR = 100 s and N = 7, the fractional frequency
stability is σy(τ) ≅ 3.3 (2) × 10-13 τ-1/2 for τ ≤ 2 h.  We have measured the clock transition
frequency with a fractional systematic uncertainty of 3.4 × 10-15.  This uncertainty is primarily
limited by the uncertainty in the Zeeman shift due to fields at the trap frequency Ω.  It can be
reduced with more measurements of ω0, and by decreasing Ω and the trap dimensions.  Better
magnetic shielding will reduce fluctuations in the static magnetic field, and use of a smaller, more
tightly confining trap will allow linear crystals with more ions.  By monitoring each ion
individually, we can determine their internal states with negligible uncertainty, which will eliminate
noise due to laser frequency and intensity fluctuations.  Finally, we are also investigating the use
of entangled states to reduce σy(τ) [29].

This work was funded by ONR and ARO.  We are grateful to R. Drullinger, S. Jefferts,
D. Lee, T. Parker, and F. Walls for useful discussions.  We thank F. Walls for providing the
microwave frequency synthesizer [19], and T. Parker for frequency comparisons to TAI.  We
thank P. Huang, D. Lee, M. Lombardi, D. Sullivan, and M. Young for carefully reading this
manuscript.
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Table 1:  Systematic shifts of the clock transition frequency, expressed fractionally.  The

magnitudes are calculated using Prf = 20 mW,  TR = 100 s, Bs = 3 × 10-7 T and Tambient =

300 K.  Here, B60 and BΩ are the magnetic field components at 60 Hz and Ω, Ip is the

intensity of beam p during the Ramsey interrogation time, δp the detuning of the

frequency of beam p from that of transition p, γ the linewidth of the cooling transition,

and dS/df the slope of the background added to the Ramsey fringe.  Other symbols are

defined in the text.

Shift Scaling Magnitude of
Effect

Overall Uncertainty
in Effect

Quadratic Zeeman (static) + <Bs
2> 2 × 10 -14 1.4 × 10-15

Quadratic Zeeman (60 Hz) + <B60
2> < 2 × 10-20 < 2 × 10-20

Quadratic Zeeman (Ω) + <BΩ
2> 5 × 10-15 3.2 × 10-15

Blackbody ac Stark - T4
ambient < 1.0 × 10 -16 < 1.0 × 10 -16

Blackbody ac Zeeman [23] + T2
ambient < 1.3 × 10 -17 < 1.3 × 10 -17

Light shift from 194 nm I p p

p

δ
δ γ2 1

4
2+

< 3 × 10-16 < 3 × 10-16

ac Stark (from trap fields) - <Erf
2> < 2 × 10-18 < 2 × 10-18

Second-order Doppler - <V
2/c2> < 3 × 10-17 < 3 × 10-17

Background slope - (dS/df)/TR
2 < 2 × 10-19 < 2 × 10-19

Neighboring transitions 1/(B tR TR) < 1 × 10-17 < 1 × 10-17

Microwave chirp, leakage
and spectrum asymmetries

1/TR 3 × 10-16 8 × 10-16

Helium pressure shift -nHe < 1 × 10-19 < 1 × 10-19
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Figure 1:  Partial energy level diagram of 199Hg+ in zero magnetic field.

Figure 2:  Schematic diagram of the linear trap. The trap is formed by four parallel rods of radius

r = 0.38 mm, and two endcaps 4 mm apart.  A string of ions is depicted at the trap

center.



8

References

* Work of U.S. Government, not subject to U.S. copyright

† Present address:  KLA, Austin, TX

1 Proc. 5th Symp. Freq. Standards and Metrology, ed. J.C. Bergquist, (World Scientific,

1996).

2 P.T.H. Fisk, Rep. Prog. Phys. 60, 761 (1997).

3 Proc. IEEE: Special Issue on Time and Freq. 79 (1991).

4 R.E. Drullinger, J.H. Shirley and W.D. Lee, in 28th Ann. PTTI Appl. And Planning Mtg.,

255 (1996).

5 E. Simon, P. Laurent, C. Mandache and A. Clairon, in 11th Eur. Freq. And Time Forum

Neuchatel, 43 (1997).

6 J.J. Bollinger, J.D. Prestage, W. M. Itano, and D.J. Wineland, Phys. Rev. Lett. 54, 1000

(1985).

7 J. Drees and W. Paul, Z. Phys. 180, 340 (1964).

8 D.J. Wineland, J.C. Bergquist, J.J. Bollinger, W.M. Itano, D.J. Heinzen, S.L. Gilbert, C.H.

Manney, and M.G. Raizen, IEEE Trans. On Ultrasonics, Ferroelectrics, and Frequency

Control 37, 515 (1990).

9 J.A. Barnes, A.R. Chi, L.S. Cutler, D.J. Healey, D.B. Leeson, T.E. McGunigal, J.A. Mullen,

Jr., W.L. Smith, R.L. Sydnor, R.F.C. Vessot, and G.M.R. Winkler, IEEE Trans. Instrum.

Meas. IM-20 , 105 (1971).

10 W.M. Itano, J.C. Bergquist, J.J. Bollinger, J.M. Gilligan, D.J. Heinzen, F.L. Moore, M.G.

Raizen, and D.J. Wineland, Phys. Rev. A 47, 3554 (1993).

11 D.J. Wineland, W.M. Itano, J.C. Bergquist, J.J. Bollinger, F. Diedrich, and S.L. Gilbert,

Proc. 4th Symp.  Freq. Standards and Metrology, ed. A. Demarchi, 71 (Springer Verlag,

Heidelberg, 1989).

12 N.F. Ramsey, Molecular Beams (Oxford Univ. Press, London, 1956).

13 R.L. Tjoelker, J.D. Prestage, L. Maleki, in Ref. [1], p. 33.

14 P.T.H. Fisk, M.J. Sellars, M.A. Lawn, C. Coles, in Ref. [1], p. 27.



9

15 R.L. Tjoelker, J.D. Prestage, G.J. Dick, and L. Maleki, Proc. 1993 IEEE Int. Freq. Control

Symp., 132 (1993).

16 D.J. Berkeland,  F.C. Cruz and J.C. Bergquist, Appl. Opt. 2006, 4159 (1997).

17 M.E. Poitzsch, J.C. Bergquist, W.M. Itano, and D.J. Wineland,  Rev. Sci. Instrum. 67, 129

(1996).

18 D.J. Berkeland, J.D. Miller,  J.C. Bergquist, W.M. Itano, and D.J. Wineland, (submitted for

publication to Phys. Rev. A, Aug. 1997).

19 C.W. Nelson, F.L. Walls, F.G. Ascarrunz, and P.A. Pond, Proc. 1992 IEEE Freq. Control

Symp., 64 (1992).

20 W.D. Lee, J.H. Shirley, J.P. Lowe, and R.E. Drullinger, IEEE Trans. Instrum. Meas. 44, 120

(1995).

21 W.M. Itano, J.C. Bergquist, and D.J. Wineland, J. Opt. Soc. Am. B 2, 1392 (1985).

22 B. Cagnac, Ann. Phys. (Paris) 6, 467 (1961).

23 W.M. Itano, L.L. Lewis, and D.J. Wineland, Phys. Rev. A 25, 1233 (1982).

24 G. Gabrielse, X. Fei, W. Jhe, L.A. Orozco, J. Tan, R.L. Tjoelker, J. Haas, H. Kalinowsky,

T.A. Trainor, and W. Kells, Am. Inst. Phys. Conf. Ser. 233, 549 (1991).

25 J.B. Hasted, Physics of Atomic Collisions (American Elsevier, 1972).

26 L.S. Cutler, R.P. Giffard, and M.D. McGuire, Proc. 37th Ann. Symp. Freq. Control, 32

(1983).

27 Bureau International des Poids et Mesures Circular T 113, 4 (1997).

28 L.S. Cutler, R.P. Giffard, and M.D. McGuire, Proc. 13th Ann. PTTI Appl. And Planning

Meeting, NASA Conf. Publ. 2220, 563 (1981).

29 J.J. Bollinger, W.M. Itano, D.J. Wineland, and D.J. Heinzen, Phys. Rev. A 54, R4649 (1996).



194 nm

282 nm

S 1/2
2

D 5/2
2

P 1/2
2

F = 0

F = 1

F = 2

F = 3

F = 0
F = 1

40.5  G H z

6.9  G H z

pr

W ( P 1 /2) � J # 2  ns2 -1

W ( D 5/2) # 90  m s2

F ig u re  1



1 .7  m m

4  m m
V 0 cos(: t)

U 0 U 0

F igu re  2


